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A bstract 

One  way o f  stating the boots t rap theory is to say that  hadrons  are 'dense ' .  In order for 
this  to have a truly physical meaning,  and in order for the abstract  idea o f  infinite 
¢ardinality to be rigorously self-consistent,  it is necessary to redefine the concept  o f  
denseness  to mean  that  size is increasing as velocity. 

1. Introduction 

Using the axioms of formal logic, the present author has recently shown 
(Allen, 1973) that the bootstrap theory of hadronic constituents is logically 
superior to the traditional theory favored by fundamentalists. This conclusion 
arises from the observation that the fundamentalness of a particle can never 
be demonstrated experimentally: given a purportedly fundamental particle 
which has not yet been split, one can always argue that the particle could be 
split if more energy were available for that purpose. On the other hand, the 
latter argument need not be demonstrated experimentally under the axiom of 
formal logic that if condition p is false, then the implication p ~ q must be true 

Evidently~ some physicists will insist on talking about the constituents of 
hadrons under any circumstances (Lubkin, 1972). This is not inconsistent 
with the present author's results, provided that one always talks about such 
constituents in the plural. In other words, the bootstrap theory may be cast as 
the following proposition. 

Proposition 1.1. Hadrons are "dense" in the mathematical sense o f  the word. 
Indeed, the mathematical concept of a dense set and the physical concept 

of the bootstrap are so intimately related that the latter theory cannot be 
formalized with any rigor until the former, purely mathematical issue has been 
addressed. One is thus faced with the problem of attaching some realistic 
physical meaning to the idea of uncountably infinite sets. At least for the 
pragmatic physicist, it should seem less than satisfactory to interpret 
Proposition 1.1 to mean that hadrons are composed of an infinitely large 
number of infinitely small parts. 
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Interestingly, the idea of infinite cardinality first arose in dealing with the 
physical problems of space, time, and motion as set forth in the Zeno para- 
doxes (Ballif & Dibble, 1969). Because much has been learned about space, 
time, and motion since the days of Zeno and since Cantor formalized the 
concept of an infinite set (Cantor, 1915), it is not surprising that mathematical 
formalisms which continue to rely on these ancient intuitions can be shown to 
lack rigor (Alien, 1972). Hence the approach here will be to return to the 
original intuitions underlying the classical concept of the continuum, and revise 
them so that the idea of denseness will be both physically meaningful and 
internally self-consistent. If this seems to be an overly pretentious aspiration, 
note that the current use of nonfinite mathematics invites the same sort of 
criticism that Steigman has offered with respect to antimatter: 'Scientists should 
not postulate the existence of antimatter to solve a problem in astrophysics, 
and then use the solved problem to prove that antimatter exists' (Thomsen, 
1973). 

2. The New Denseness 

The classical concept of denseness may be stated in the following form. 
Axiom 2.1. A Point-sized object at rest occupies one location o f  space, dx 

in size. I f  the object is set in motion, then it sequentially occupies an infinite 
succession of  such locations, each being dx in size. 

The perspective of Axiom 2.1, which is based on the paradigms of Zeno, 
Newton, arfd Cantor, is clearly anticlinal to the thrust of modern physics. For 
one thing it depends upon absolute space and absolute certainty of position, 
contrary to the first principles bf relativistic and quantum mechanics, respect- 
ively. The updated axiom proposed here is more in accord with modern theory 
and may be stated as follows. 

Axiom 2.2. Spacial size is a monotone increasing function o f  velocity, 
scaled by d nonvanishing interval o f  time. Thus a point-sized object has a 
proper size o f  dx which is transformed by motion to d*x > dx, where the 
specific solution for d*x is stochastic and depends upon the parameters of  the 
particular problem at hand. 

Note that the new axiom is antithetical to, but separate from, Lorentz con- 
traction. The rationale underlying Axiom 2.2 is that the spacial size of  an object 
is measured by the volume of space in which the probability of interacting with 
it kinematically is unity. Suppose then that a point of mass moves through a 
set of spacial co-ordinates (xi, Yi, z~ } over the bounded interval of time 
a ~ t ~ b. Taking the foregoing definition of spacial size in the most general 
sense, it follows that over the interval of time a ~< t ~< b, the point of mass has 
a size that is equal to the total volume given by the set of co-ordinates {xi, Yi, zi). 
This interpretation of size differs from Axiom 2. I in two important respects 
which will be treated separately. 

First, the classical view is that the interval of time over which the spacial size 
of a moving object is measured must be 'instantaneous', and this is defined such 
that the resulting measurement must be equal to the size of the object when 
measured at rest. In other words, an instantaneous measurement of size is 
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defined so as to negate the motion of objects. This is not supported by 
phenomena since in order to perform any measurement on an object some 
apparatus must interact with it, and at the very instant this interaction takes 
place a moving object will be found to be quite different from an object at 
rest, i.e., it will have some kinetic energy as a result of its motion. Under 
Axiom 2.2, on the other hand, the question of instantaneous measurement 
must be considered from a different perspective. Consider two points of mass, 
(~ and 3, having uniform velocities va and v~ such that 

v¢, > v~ (2.1) 

Over a fixed interval of time At, the spacial size of these two objects is now 
deemed to be 

s a ¢¢ v = A t  (2.2) 

s# o~ v~At 

For the purpose of  having an "instantaneous" measurement, one may let At 
become arbitrarily small to assume the value dr. However, since the momentum 
of an object is not to vanish while it is moving, and since to preserve analyticity 
one must be able to divide by dr, dt must remain positive even when indefinitely 
small. As a result, the monotone increasing relationship between size and vel- 
ocity given in (2.2) is maintained for 'instantaneous' measurements. Hence, it 
follows from inequality 2.1 that the size of a is greater than the size of 3, even 
for instantaneous measurements. 

Secondly, the classical viewpoint of size is intimately related to the idea that 
moving objects can maintain a fixed, definite spacial location. While this idea 
may be ¢iable for macroscopic objects, it is contrary to quantum mechanical 
principles when applied to point-sized objects. As just shown, Axiom 2.2 
defines the position of a point-like object to be much more stochastic. In 
particular, the new axiom carries the idea that a particle is where it goes. Thus 
one is forced to talk about the location of a particle in fuzzy rather than 
binary terms, thereby admitting the axiomatic necessity for de Broglie waves. 

3. The New Rigor 

An important property of the classical infinite set G is that its elements may 
be put into one-to-one correspondence with the elements of its proper subset 
f t .  This isomorphism is demonstrated through some scheme which pairs any 
unique but arbitrary element of G with a unique, corresponding element of ~'. 
In order to demonstrate the contradictions which typically accompany such 
schemes and the way in which the use of Axiom 2.2 in lieu of Axiom 2.1 can 
produce new and self-consistent results, it is convenient to consider a geo- 
metric example widely used in undergraduate textbooks (see for example, 
Boyer, 1955; Kasner & Newman, 1940; Richardson, 1955;and Spiegel, 1969). 

This example employs a triangle having base B and apex L. Within the 
triangle is a line segment B' which is parallel to B, but closer to L than is B. 
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Clearly, B' must be shorter than B and thus, in length, is a proper subset of B. 
In addition, the triangle contains a line segment R i which intersects L and an 
arbitrary point on B, thus intersecting B' as well. Ri may be used to pair a 
point on B with a point on B' under the following Euclidean postulate. 

Postulate 3.1. (B N Ri} and ~B' N Ri)  are both one-element sets. 
Purportedly, the conclusion that B maps onto B' follows immediately from 

Postulate 3.1 on the grounds that R l is defined such that it can be anywhere 
within the area of the triangle. This thinking, however, is not very rigorous. 
Since B and B' each contain more than just one point, B cannot be mapped 
onto B' with just one line R i because this only maps one element of B onto 
one element of  B'. Rather, a family of such lines (Ri)  must be used. Thus the 
conclusion that B maps onto B' depends upon and implies the following 
additional postulate which is not one of the Euclidean postulates. 

Postulate 3.2. As the number o f  lines in (Ri) grows without bound, B is 
mapped onto B'. 

But Postulate 3.2 is false, as can be easily demonstrated. Even if (Ri} is 
dense its elements are still ordered in space. That is, given some R i E (Ri} , 
there exists a unique Ri÷ 1 E {Ri) which is closer to R i than any other 
dement of {Ri} in a given direction. Thus if (Ri)  maps onto the area of the 
triangle, then R l and Ri+ 1 alone must map onto the uniformly continuous 
area of  the triangle bounded by R i and Ri+ 1. But since R i and R i ,  l intersect 
at L, the distance between them is positive except at L. Indeed, it is monotone 
increasing as distance from L. Hence there is an ever-widening gap between R i 
and Ri+ l which leaves that part of the triangle bounded by these two lines 
uncovered. 

There is another approach to the problem of  mapping B onto B' which 
addresses the original dynamical intuitions embodied in the Zeno paradoxes. 
This approach consists of replacing (Ri} with a radius R having its locus at L, 
which spins across the area of the'triangle. The classical assumptions underlying 
this dynamical model (as exemplified by the calculus) are the same as before 
since, classically, dynamical systems are modeled with essentially the same 
intuitions as nondynamical systems. Specifically, the present situation is 
classically modeled by the following analogies for Postulates 3.1 and 3.2, the 
first of which stems from Axiom 2.1. 

Postulate 3.3. A t  any instant during which R is within the area o f  the tn" 
angle, it intersects B at exactly one point and likewise intersects B' at exactly 
one point; the instantaneous position o f  the spinning radius is identical to a 
position which it could assume when not moving. 

Postulate 3.4. l f  R moves completely across B in t time, then R moves 
completely across B' in t time. 

Postulate 3.4 is beyond questioning since it can be easily verified experi- 
mentally. For example, if this were not true, then rods could not spin without 
breaking up into pieces and clocks could not have hands. Indeed, the obvious 
truth of Postulate 3.4 is probably responsible for the intuitive acceptance of 
Postulate 3.2 under the nondynamical circumstances in which the postulate 
leads to a contradiction. Postulate 3.3, on the other hand, is now a Euclidean 
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postulate which has been transported into the realm of dynamical systems 
contrary to its intended purpose. As a result, the previous contradiction con- 
finues to appe/m By Postulate 3.3 the set of all positions R assumes in spinning 
across the triangle must be a dense set of lines, but one in which any two con- 
secutive lines are separated by a positive distance (increasing as distance from 
L) because, again, they all meet at L thus leaving part of  the trian~e uncovered 
as before, contrary to Postulate 3.4. In order to eliminate this self-contradiction, 
let the Euclidean Postulate 3.3 be replaced in this dynamical situation by an 
alternative, dynamical postulate which may be easily verified experimentally, 
and which substitutes Axiom 2.2 for Axiom 2.1. 

Postulate 3.5. Over any positive interval o f  time At, the distance a point on 
R moves is proportional to its distance from L, and this proporffonal relation- 
ship holds as At  becomes arbitrarily small to assume the vahte dr. 

Under Postulate 3.5 the previous contradiction no longer appears because 
the 'instantaneous" position of R is now longer at B than at B'. In other words, 
once spinning, the radius is transformed into a circle's sector. As noted 
previously, another way of interpreting this transformation is to say that the 
spinning radius has wave properties. Consider a point on the radius r distance 
from L. A frequency is inherently associated with such a point, v = t -I ,  where 
t is the time required for R to make one complete revolution. The speed of the 
point is then required to be v (r) = 27try. Hence the point's 'wavelength" must be 
defined as X = 27rr in order to preserve the relationship v(r) = Xv. On what 
grounds might this definition be justified? Is the instantaneous position of the 
point really distributed stochastically over the circumference of  its orbit? In 
order to answer these questions, let the point have a mass o fm  and an angular 
momentum offL Then, by defining ~k as 2~rr, one can obtain it through de 
Broglie's equation. The proof is trivial: 

Assume/1 = rmv(r) (3.1) 

Divide both sides of (3.1) by my(r) to obtain 

~lmv(r) = r (3.2) 

Next multiply both sides of  (3.2) by 27r to obtain 

h/my(r) = 2rrr (3.3) 

Under the definition ?~ = 21rr, (3.3) becomes de Broglie's equation 

h/mv(r) = ~, 

What more could one ask? 

4. Conclusion 

Under the new Axiom 2.2, one can cast the bootstrap theory very con- 
veniently as Proposition 1.1. To say that hadrons are dense no longer means 
that they have an infinitely large number of infinitely small constituents, as 
would be true under the classical Axiom 2.1. Rather, it now means that what 
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a hadron is composed o f  varies according to the mot ion of  the hadron at the 
time this question is investigated. In other  words,  as the boots t rap theory says, 
there are as many hadrons as there are self-consistent states for hadrons to 
assume. 
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